Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058

RE-EXAMINATION

Jan. 2017

Program: B.Tech. Electrical

Date:

Duration: Three Hour

Maximum Marks: 100

Semester: VI

Master file.

Instructions:

Course code: BTE327

1. Question No 1 is compulsory.

- 2. Attempt any four questions out of remaining six.
- 3. Draw neat diagrams
- 4. Assume suitable data if necessary

Name of the Course: Control System II

Question No.	Questions	Max imu m Mar ks	Course Outcome Number	Mod ule No.
Q1.				
A	The closed loop frequency response $ M(jw) $ versus requency of a second order prototype system is shown in Fig. 1. Find out the peak time, percentage overshoot, settling time and steady- state error for unit step .	10	1,2,3	1
В	Describe Eigen Values and Eigen Vector in brief.	04	2	3
<u>В</u> С	Derive the expression for modal matrix for diagonalizing	06	3	3
U	any square matrix with distinct eigen values.		_	

22.	Ť		1	
~~~	Explain the importance of observer in state space design.	(04)		
Α	Define Controllability and Observability.	(04)		
	Derive $K_z = K_x P^{-1}$ where $K_z$ is feedback gain vector of the system which is not represented in phase variable form, $K_x$ is feedback gain vector of the system which is represented in phase variable form and $P$ is a transformation matrix between these two state space representations of same physical system.	(06)	4,5	4
В	Sketch the polar Nyquist plot for the open loop transfer function given below. $G(s) = \frac{10}{s(s+1)(1+0.5s)}$	06	3	1
Q3.				
A	A control system is described by the differential equation $\frac{d^{3}y(t)}{dt^{3}} = u(t)$ where y(t) is the observed output and u(t) is the input. 1. Describe the system in state space form 2. Is the system controllable? 3. Is the system Observable?	10	6,7	5
В	Explain with mathematical justification why "s" is replaced with "jw" in frequency domain analysis of the control system.	10	2,4,5	1
Q4.				
	Consider the following transfer function: $G(s) = \frac{(s+6)}{(s+3)(s+8)(s+10)}$ If the system is represented in cascade form as shown in figure below $\underbrace{U(s)}_{s+10} = \underbrace{Z_{3}(s)}_{s+8} = \underbrace{Z_{2}(s)}_{s+6} = \underbrace{\frac{s+6}{s+3}}_{s+3}$ Consider $Z_{1}(s) = Y(s), Z_{2}(s)$ and $Z_{3}(s)$ as state variables for designing the controller. Design a controller to yield a closed loop response of 10% overshoot with a settling time of 1 second. Design the controller by first	20	4.5.6	

.

Q5.				
	Consider the plant $G(s) = \frac{1}{s(s+3)(s+7)}$ whose state variables are not available. Design an observer for the observer canonical variables to yield a transient response described by <b>damping ration of 0.4</b> and <b>natural frequency of oscillations is 75</b> . Place the third pole 10 times farther from the imaginary axis than the dominant poles.	20	2,3,4,5,6	2
Q6.	Consider the unity feedback system with G(s) as forward path transfer function with $G(s) = \frac{K}{s(s+5)(s+20)}$ The uncompensated system has about 55% overshoot and a peak time of 0.5 second when Kv= 10. Use frequency response methods to design a lead compensator to reduce the percent overshoot to 10%, while keeping the peak time and steady state error about the same or less.	20	3,4,5,6,7	7
Q7.	An electric ventricular assist device (EVAD) that helps pump blood concurrently to a effective natural heart in sick patients can be shown to have a transfer function. $G(s) = \frac{P_{ao}(s)}{E_m(s)} = \frac{1361}{s^2 + 69s + 70.85}$ The input, Em(s), is the motor's armature voltage, and the output is Pao(s), the aortic blood pressure (Tasch, 1990). The EVAD will be controlled in the closed-loop configuration with unity feedback loop with G(s) as forward path transfer function. Design a phase lag compensator to achieve a <b>tenfold</b> <b>improvement</b> in the steady-state error to step inputs without appreciably affecting the transient response of the uncompensated system	20	3,4,5,6,7	2

ə *

ę. Ž

# Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING



(An Autonomous Institution Affiliated to University of Mumbai)

### SGP KT (OLD) Jan.2017

Total Marks: 100 CLASS/SEM : TE/VI (ELECTRICAL) SUBJECT : PROTECTION & SWITCH Master fi					
.•	Answ	vers	ny FIVE question out of SEVEN questions to all sub questions should be grouped together		
•	Figur	es to	the right indicate full marks		
	Q1		Explain protection provided for generator in case of	2 0	
	)		i) Failure of prime mover	U	
²²	ومرجرته		ii) Motoring operation of generator		
	Q2 )	a)	Using following key points write short note on air circuit breaker (i)Ratings: (ii) Arc quenching :(iii)utilization categories (iv)applications:	1 0	
		b )	(v)advantages: Write short note on lightning arrester.	1 0	
	Q3 )	a)	What are different zones of protection? What is meant by primary and back up protection? Explain various types of back up protections	1 0	
		b )	Describe the protection scheme which restrains the operation of relay during inrush magnetizing current of a transformer.	1 0	
	Q4 )	1.	A three phase, $11KV/33KV$ , Y- $\Delta$ connected power transformer is protected by differential protection. The C.T.s on the LV side have a current ratio of 400/5. What must be the ratio of CTs on HV side? With the help of neat drawing show CTs on both sides.	2 0	

Q5	a)	Explain construction and working of Induction cup or disc type relay.				
)		•	0			
,	b	Differentiate between a fuse and a circuit breaker.	1			
	)		0			
Q6	,	Write short notes	2			
<b>X</b> ⁰			0			
,		1. Reverse power or directional relay (electromechanical type):				
		2.Static relays				
Q7		Write note on any two				
)		a. Protection for transmission line using distance relays.	2			
		b. Numerical relay	0			
		c. Construction, working and application of Vacuum circuit	v			
		breaker.				

d. Buchholz relay